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A NONLINF~ REGULARIZING ALGORITHM FOR SOLVING ONE CLASS 

OF INVERSE PROBLEMS OF HEAT CONDUCTION 

Yu. E. Voskoboinikov and A. V. Bronnikov UDC 519.2 

A nonlinear regularizing algorithm is proposed for solving ill-conditioned sys- 
tems of equations, which takes account of typical a ~riori information about 
the solution sought. 

Numerous formulations of the inverse heat conduction problem [i] (specifically, a pa- 
rametrized identification of heat conduction proCeSseS) lead to the system of linear alge- 
braic equations of the form 

K~ = f ( 1 )  

As a rule, system (i) is ill-conditioned or degenerate and in order to construct a stable 
(regularized) solution, different methods of regularization of the solution are used [2, 
3]. In this work, a method is presented for constructing a regularized solution on the 
basis of the singular expansion of the matrix K, taking into account preliminary informa- 
tion that is typical for the considered problem. 

Linear Regularizing Algorithm. We assume for definiteness that the matrix K is of 
order Nf x N~, where ~ and f are vectors of appropriate dimensionality. The representation 
[4] K = UAV T is called a Singular expansion of the matrix K~ in Which U and V are orthogonal 
matrices of order Nf • Nf, N~• N~, Where T is the transpose sign, A is a matrix of order 
Nf • ~with elements 

{A}~,j= to, iv~j, 
The values h i ~ 0, i = i, 2, ..., N~, are called singular numbers of the matrix K. Suppose 
that a) Nj e N~; b) singular numberS are ordered: Xi ~ ~2 ~ ... ~ XN �9 ~ 0; c) instead of 
the exact right-hand side of f, the vector f = f + N, where ~ is a random vector with zero 
mean, reflecting errors in specifying the right-hand side of Eq, (i), is specified. 

A solution @~ stable With respect to noise D and to the errors of the computational 
process realizing a singular expansion can be represented in the following form 

(2) 

where x~ is an N~-dimensional vector; x~(j) is its j projection; y(j) is the j-projection 
of the vector y = uTf; ~ is a parameter of regulariZation; m(k) is a nonincreasing positive 
function (for example, m(k) = X-0, 8 e i). It can be shown that for an appropriate choice 
of ~ the solution ~ is regularized, i.e,, when the errors tend to zero, ~ converges to 
the exact pseudosolution of system (i). By not considering the choice of ~, we only note 
that existing algorithms for estimating an optimal (in the sense of a root-mean-square 
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error of the solution) value of the parameter of regularization [3, 5] are realized effec- 
tively with the use of the singular expansion of the matrix K. Later on, the parameter 
is considered to be chosen�9 We consider two characteristics of a linear regularizing algo- 
rithm. The following chain of equalities holds: 

~ m  
N~ 

- -  .= Ij -~ =m (ljf = Mde(=) + Me~ (3) 

The first term can be interpreted as the total number of projection x(j) of the vector 
x = vT~, not distorting the regularizing algorithm (2), and therefore, we call Mde(~) the 
number of degrees of freedom of the regularizing algorithm. The value Mco(~) shows the 
total number of projections x(j), which are practically excluded (due to their low infor- 
mation provision, a small value of the signal/noise ratio = ~j=x~(j)/% ~) from the solution 
~ (transfer to a systematic error b~ [3, p. 143]). These projections can be determined, 
however, not from the right-hand part of system (i) but from additional a priori information 
on the vector ~. 

A prioriRestrictions and Their Inclusion in the Construction of the Solution. Reli- 
able a priori information about the vector ~ determines a priori restrictions imposed on 
the constructed solution ~. The following restrictions are typical for the given problem: 

I) nonzero projections ~ (j) for j e J ~ only determine an admissible set #~ for the 
vector ~: 

% =  {~:~(])=0, I~4}, (4) 

2) the fact that projections ~(j) belong to the interval [~min(J),~ max(J)] determines 
the admissible set ~=: 

% = {~ : ~ (~) ~ ~ (i) ~< ~m~ (~)}. ( s )  

The sets ~ and ~2 are convex and closed�9 

Evidently, the introduction of a priori restrictions (4), (5) in a linear algorithm (2) 
by means of a stabilizing factor m(X) is not possible�9 Therefore, in the present work, in 
order to take account of (4), (5), we propose using the so-called "method of projections 
into convex sets" [6, 7]. We will consider the restrictions of type i), 2) although, in 
general, there are other restrictions, specific for a particular problem, which determine 
additional sets ~i. We assume that a priori restrictions determine m admissible sets #l, 
%, "'', ~m and that all these sets are convex and closed. 

Construction of a solution that satisfies a priori restrictions has a simple geometri- 
m 

cal interpretation: The solution has to belong to the intersection ~0=~ of the admis- 

sible sets ~i, and each newly introduced restriction narrows the region of admissible solu- 
tions. The determination of the element ~* of the convex set ~0 is reduced to the construc- 
tion of the projection operator into the set ~0. The structure of the set #0 can be such 
that a direct construction of the projection operator into ~r is a complex problem, while 
the projection operator Pi into any i set from ~i has a sufficiently simple form. Conse- 
quently, in order to find(P* it is advisable to use the iteration procedure ~(k) = pk~(0), 
based on the following statement [7]: If P = PmPm_I...PI, then a stationary point ~* of the 

operator P belongs to ~0, and the sequence {~(k)} converges to ~* for any ~(0). In order to 
improve the convergence we introduce operators T i = I + ~i(Pi - I), where I is the unit oper- 
ator and ~i is the relaxation parameter. For the operator T = TmTm_I...T l the following 
statement holds [7]: If #0 is not empty and ~i satisfies the condition 

i = i, 2, 

(6)  

(7)  

�9 �9 m, the 

then the sequence 

converges to ~* for any initial element c~ (~ Evidently, for Di = i, 
equality T = P holds. 
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Fig. i, Results of the computation- 
al experiment: i) vector of exact 
solution; 2) vector of regularized 
solution T~; 3)vector of regular- 
ized solution ~*. 

A Nonlinear Algorithm for Constructing ~Reg~!ar%~e~ $9$u~t~on. In the proposed scheme 
of nonlinear regularization, in o~der to save informative components of the solution ~ ~ we 
introduce the admissible set #a, defined as 

where {vT~}; is the j-th projection of the vector vT% Mde(a) is the number of degrees of 
freedom forJthe regularizing algorithm defined from (3). Evidently, projections with num- 
bers Mde(~) + 1 ~ j ~ N~ are formed basically by the a priori restrictions (4), (5). We 
note that the set ~a is also convex and closed. The algorithmic realization of the proce- 
dure (7) for the sets ~, ~2, and ~a is of the form: 

Step 0: evaluation of the required solution ~ and construction of the initial approx- 
imation 

~!~)-~ VBWq)a, 

where B is a diagonal matrix of order N ~ x N ~, the first Mde (~) diagonal elements of which 
are equal to i and the rest are zeros. 

Step i : 

,~(<), (]) : ~(s (]) + ~t~ ~) i h  (1) ~')(]) - ,(s (/)1, 1 ~< i < ?% 

Step 2 : 

Step 3 : 

where 

f], ./E J,~; 
1: (J) = !o, i ~ J~. 

Step 4: 

Step 5: 

Step 6: 

q)i)a (I) = (P~,)2 (i) -F F~ '~) [min  {q~max (j), 'w,~"(")2 t J,,,'"" - -  w," (n)2 (])1. 

(n) , , r  (n) 
X a , 3  ~ V q ) a , 3 .  

x( , ,+l)( j )= ~,4 ~ ( ] ) + ( 1 - - " ( " ) ' x  (n) " '  

x(I,)3 (1), MeT (o:) + 1 ~--~ j ~.~ N~. 

~p(n+l ) ,, (n+l) 
= vx~ 
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and then steps i)-6) are repeated for the regularized solution ~(n+z). When the condition 
I[%~~(n+~) -~(n)ll ~ e is satisfied the iteration process is completed and ~* is assumed as 
~ ~n+z). For the described algorithm of a nonlinear regularization the following statement 
holds: When conditions (6) are satisfied the sequence {q~(n)} converges coordinates by 

3 

coordinate to the limiting point q~* belonging to the set 09 o = ~ (D~. In order to accelerate 
f=! 

the convergence it is recommended that in one of the first iterations the third step of the 
algorithm should be replaced by the following one: 

where 

(n) . (n - - l ) . .~  (n--l) ~ ,3  (j) = ~ , , 2  tl) q-  ~* [~(~,)~ (]) - -%,2 (J)l, 1 ~ ] ~  N~, (8) 

N~ N~ 

/=1 i=L 

Here ~i  (n)  = 1, 1 ~ i ~ 4. As t h e  c o m p u t a t i o n a l  e x p e r i m e n t  has  shown, such  c h o i c e  o f  ~i  (n)  
and t h e  use  o f  p r o c e d u r e  (8)  r e d u c e s  t h e  number o f  r e q u i r e d  i t e r a t i o n s  3-5 t i m e s  and t h e  
number o f  i t e r a t i o n s  in  t o t a l  does n o t  exceed  30. 

R e s u l t s  o f  t h e  C o m p u t a t i o n a l  Exper imen t . The d e s c r i b e d  a l g o r i t h m  of  t h e  n o n l i n e a r  
r e g u l a r i z a t i o n  i s  r e a l i z e d  as a s y s t e m  of  i n t e r c o n n e c t e d  modules  in  t h e  FORTRAN-IV l a n g u a g e  
e n t e r i n g  i n t o  t h e  complex o f  s u b r o u t i n e s  SVDSYS f o r  s o l v i n g  i l l - c o n d i t i o n e d  sy s t ems  o f  l i n e a r  
a l g e b r a i c  e q u a t i o n s  which was d e v e l o p e d  in  t h e  I n s t i t u t e  o f  T h e o r e t i c a l  and A p p l i e d  Mechan- 
i c s ,  S i b e r i a n  Branch ,  Academy of  S c i e n c e s  o f  t h e  USSR. We l i s t  t h e  r e s u l t s  o f  one computa-  
t i o n a l  e x p e r i m e n t .  

The m a t r i x  K had d imens ions  N~ = 10, Nf = 20, and t h e  r a t i o  o f  s i n g u l a r  numbers Xmax/ 
~min ~ 10z~ (the case of the ill-conditioned matrix). We specified two similar unit projec- 
tions in the vector ~ (Fig. i) and distorted the right-hand side by a noise with relative 
level equal to 1%. From noisy data we constructed regularized solutions: ~ ~ (a linear al- 
gorithm) and ~* (a nonlinear algorithm with restrictions ~min(J) = 0, ~max(J) = 2), which 
are shown in Fig. i. In the solution ~* there are no negative projections observed in ~a 
(the distinctive characteristic of the linear regularization algorithm in the reconstruction 
of ~-type solutions), and it is obvious that the accuracy of ~* with closely arranged pro- 
jections being allowed is higher. 

In conclusion, we note that the presented algorithm of the nonlinear regularization is 
of high computational efficiency and can be used for solving problems on mini-computers and 
personal computers in automated scientific research systems. 

NOTATION 

K, system matrix; ~, f, vector of an unknown solution and of the right-hand side of the 
system of equations; N~, Nf, dimensions of vectors ~ and f; U, A, and V, matrices entering 
into a singular expansion; Xj, singular numbers; x~,~ ~, vectors of a regularized solution; 
~, regularization parameter; Mde(~), Mco (~), number of degrees of freedom and number of con- 
straints of the regularizing algorithm; m(X), stabilizing factor; o~ , noise dispersion in 
the right-hand side; q, noise vector on the right-hand side; r~(f), regularizer; ~i, admis- 
sible sets; J~, set of nonzero ~(j); Pi, operator of projection into the set ~i; Ti, itera- 
tion operator; i, unit operator; ~i, relaxation parameter; ~ ~(n), vector of solution for the 

n-th iteration. 
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SOLUTION OF THE INTERNAL INVERSE PROBLEM FOR A BULK 

ANISOTROPIC BODY 

L. A. Kozdoba and V. N. Mudrikov UDC 536.242 

An approach to the problem of modeling temperature fields of bulk anisotropic 
bodies is developed and realized on the basis of the equivalence principle. 

Composite materials and structures that are bulk bodies from a set of elements consist- 
ing from diverse materials start to be used more and more in recent years. Radio electronic 
apparatuS (REA) that must be considered as a large system are a typical example of such struc- 
tures. The thermal diagrams of the functional REA subsystems are objects requiring a sys- 
temic and hierarchical approach. These methodological modes of Solving thermal problems 
when using a whole series of principles of the phenomenological theory of heat and mass 
transfer permit optimization of the thermal regimes of the REA themselves and the thermal 
regimes of their production. 

Thus, large systems consisting of many subsystems with sharply differentiated proper- 
ties and numerous heat sources are the objects Of mathematical modeling, computational ex- 
eriment or methods and facilities of caiculational thermophysics. The primary subsystems 
(homogeneous bulk bodies of complex shape), bulk and surface heat sources (sinks) produce 
large thermal systems for whose mathematical models of the thermal regimes there are no 
real values of the thermophysical characteristics, exact coordinates, and heat sources suf- 
ficiently well known in space and time. 

One of the possible means of investigating the thermal regimes of such thermal systems 
is the experimental-theoretical approach. Underlying it are the effective (equivalent) val- 
ues of the.other characteristics in the condition of single-valuedness of the mathematical 
model (MM) of heat transport. 

The equivalent (effective) values of the listed quantities can be obtained from solu- 
tions of the inverse problem [I]. Solutions of the direct problems (DP) and the optimal 
control problems (OCP) can be obtained by using such effective (equivalent) quantities or 
functions if the equivalence principle of the phenomenological theory of heat conduction 
is used [2]. Its crux is the following. As an example we consider the problem in which 
the thermophysical characteristics of an anisotropic structure will be equivalent. In sub- 
stance, the mode of determining the thermophysical characteristics of an anisotropic body 
is elucidated when homogenization is performed. The homogenization principle has been known 
long and used successfully since the time when the MM of a homogeneous body is considered 
instead of the MM of the thermal regime of an anisOtropic body. 

The equivalence principle suggests just the means of a more or less exact determination 
of the values of the characteristics for the MM after homogenization. Let the temperature 
field of an anisotropic body be described by MMI. We determine the experimental tempera- 
tures T e on a real object or on the model of an anisotropic body at certain points. The 
number of thermocouples and their disposition is not regulated. 

The MM2 will be the model for the solution of the inverse problem (inverse, internal 
inverse, coefficient). This model of the thermal regime is written for a homogeneous body. 
We find the constant thermophysical characteristics by any method of solving the inverse 
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